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Helmholtz resonance of harbours 
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The resonant response of a harbour H of depth scale d and area A to excitation of 
frequency w through a mouth M of width a is calculated in the joint limit a2/A, 
w2Algd J. 0. The results are relevant to the tsunami response of narrow-mouthed 
harbours. 16 is assumed that an adequate approximation to the radiation im- 
pedance of the external domain is available (Miles 1972). The boundary-value 
problem for H is reduced to the solution of V .  (AVq5) = - i /A,  where A is the rela- 
tive depth, the normal derivative of q5 is prescribed in ill and vanishes elsewhere 
on the boundary of H ,  and the spatial mean of q5 must vanish. The kinetic energy 
in H is proportional to an inertial parameter A that is a quadratic functional of 
q5. It is demonstrated that decreasing/increasing A increases/decreases A. Explicit 
lower bounds to A are deveIoped for both uniform and variable depth. The 
results are extended to coupled basins (inner and outer harbours). Several 
examples are considered, including a model of Long Beach Harbor, for which 
the calculated resonant frequency of the dominant mode is within 1 % of the 
measured value. The effects of entry-separation and bottom-friction losses are 
considered; the latter are typically negligible, whereas the former may be 
comparable with, or dominate, radiation losses. 

1. Introduction 
We consider small disturbances within a harbour or bay H (see figure 1) that 

opens to an external sea E through a mouth M under the geometrical restrictions 
a! E a/R< 1, d = O(R), (i.la, b )  

and the dynamical restriction 

e d A / g d  = ~ ( k R ) 2  < 1, (1.3) 

where a is the width of M ,  A nR2 is the free-surface area, d is a characteristic 
depth (subsequentlytaken to be the mean depth of M ) ,  w is the angular frequency, 
c2 = gd is the square of the wave speed based on d ,  and k = w/c is the corresponding 
wavenumber. We assume simple harmonic motion, such that the horizontal 
velocity fi and the free-surface displacement ga t  the point r are given by 

where W implies the real part of, i is the imaginary unit, and u = {u, v }  and 5 are 
the complex amplitudes of fi and g (we omit the modifier complex amplitude of 

t Present address : Tetra Tech, Inc., Pasadena, California. 

{W, t ) ,  !k t )}  = W [ { W ,  c(r)>eawtl, (1.3) 
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FIGURE 1. Schematic diagram of harbour ( H )  opening into semi-infinite exterior domain 
( E )  through mouth ( M ) ;  T and 0 are plane polar co-ordinates with origin at the midpoint of 
M ,  and n is the unit normal to the lateral boundary (B) . 

throughout the subsequent exposition and refer to u and 6 simply as the velocity 
and displacement). Any slowly varying motion may be treated by spectral super- 
position provided that the disturbance is small and (1.2) is satisfied by the highest 
significant frequency. 

The joint restrictions (1.1) and (1.2) imply that the response of H to excitation 
in E is dominated by the Helmholtz mode, in which 5 is approximately uniform 
over H except in a small neighbourhood of M and u is strongly localized in M .  
Previous studies of this mode have been restricted to constant depth, and analyti- 
cal results are available only for simple shapes (Miles & Munk 1961; Carrier, 
Shaw & Miyata 1971a, b ;  Lee 1971; Miles 1971). The present study develops 
analytical approximations for irregularly shaped harbours of variable depth. 
[The description Helmholtz mode appears to have been introduced in this context 
by Miles & Munk (1961) ; the synonym pumping mode also is used (Lee 1971).] 

Let {c} be the mean displacement in H ,  where, here and until $7,  {)  implies 
a spatial average over H ,  and let I be the integrated volume flux through M into 
H ;  then continuity implies that I must be equal to the rate of change of volume 
in H :  

(. ” 
I = J uhdy = J ( i w g )  dA = iwA{c), 

M H 

where h is the local depth (note that, by definition, M is in the plane x = 0; 
see figure 1). The hypothesis that 6 is approximately uniform over H implies 
that the temporal mean of the potential energy in H may be approximated accord- 
ing to (after invoking 8 for the temporal mean of cos2 wt) 
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Dimensional considerations suggest that the temporal mean of the kinetic 
energy in H may be posed in the form 

= & p ( A / 4 l 1 l 2 ,  (1.6) 

where 4 is a dimensionless inertial parameter. The calculation of 4 requires 
the solution of a boundary-value problem, which is formulated in $ 2  and leads to 
the representation of -4 as a quadratic functional of a potential that satisfies 
a generalization of Poisson’s equation.? Various bounds to this representation 
are constructed in 3 3 and applied in $3 4 and 5. Coupled basins that are connected 
to an external sea to form inner and outer harbours are considered in $ 6. 

We remark that, if H is reflected in the plane of M to obtain a pair of identical 
basins connected through M ,  the potential and kinetic energies in the dominant 
mode of the coupled basins are 2U and 2 K .  Equating (1.5) and (1.6) and invoking 
(1.4) then yields the resonant period 

To = 2 ~ ( A A / g d ) i ,  (1.7) 

which suggests a possible experimental determination of A. If the basins are 
connected by a short channel of length 1, dl in (1.7) is replaced by A + +Al, 
where dll is given by (1.12) below. The resulting oscillations resemble those in a 
U-tube and were considered by Neumann (1943) on the implicit hypothesis 

The calculation of (5) is facilitated by the equivalent circuit shown in figure 
2(a )  (Miles 1971, hereinafter referenced by M71, followed by the appropriate 
sectionnumber), in which the input voltage VE = cE is the displacement thatwould 
exist just outside M if H were closed (the variation of 5 across M is negligible 
by hypothesis), V, is a measure of the actual displacement in M ,  and V, (c); 
the current 1 is defined by (1.4); ZE = RE + ~wLE is the radiation impedance of 
E with respect to 111; 

CH = A,  L H  = A?//gd (1.8a, b) 

A, B -4. 

are the equivalent capacitance and inductance of H ; $  

z, = (iwC,)-I + i W L ,  = (iwA)-1(1- €A) (1.9a, b) 

is the impedance of H with respect t o  31. The normalizations of equivalent 
voltage and equivalent current are such that the electrostatic energy stored 
in C, and the magnetic energies stored in L H  and L E  are equal to U ,  K and the 
stored energy in E,  respectively, divided by the specific weight pg; similarly, the 
ohmic dissipation rate in RE is equal to the radiated power divided by pg.  

The explicit calculation of the radiation impedance 2, is possible only for 
relatively special configurations, such as an ocean of constant depth (M 71 $3). 
In general, the external domain is characterized by both IL continuous spectrum 

t Helmholtz resonance of a harbour of constant depth is analogous to the corresponding 
two-dimensional acoustical problem, and the parameter d/J% is analogous to the ‘ conducti- 
vity’ of the acoustical resonator. The calculation of .A is much simpler for a three-dimen- 
sional resonator (Rayleigh 1896, §§304-308), in which the disturbance radiated from M 
vanishes inversely with the distance from M .  

$ The parameters 8, CH, LH and .A are denoted by K ,  C,, LH and A$! in M 71. 
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(c) 

FIGURE 2. Equivalent circuit (a )  for harbour and exterior domain, ( 6 )  with incorporation 
of entry channel and ( c )  extended to coupled basins (see 0 6). 

associated with the abyss (assumed to be semi-infinite in extent) and a discrete 
spectrum associated with the continental-shelf modes, and ZE exhibits compli- 
cated variations with frequency if, as may be true for tsunamis, the wavelength 
of the disturbance in E (which may be much longer than the wavelength in H 
owing to the greater depth) is comparable with the width of the shelf. On the other 
hand, the greater depth in E reduces the loading on H ,  and a rough approximation 
to Z E  is likely to be adequate for the calculation of the response of H .  In  particu- 
lar, it appears that an adequate approximation for the calculation of Helmholtz 
resonance is given by (Miles 1972, wherein * is designated by p) 

Z E  = (w/gdE) [* + i(0*660 - (2r)-'log (a%d/dE))] (1.10a) 

E RE -)- i w L ,  (w/gd) (BE + ~AE), (1. l o b )  

where dE is the depth just outside M and r is an oscillatory function of the pro- 
duct of shelf wavenumber and shelf width that tends asymptotically to *. 

The existence of even a short entry channel between E and H can have a, 
significant effect on the response of H and, especially, Helmholtz resonance 
(Carrier et al. 1971a, b) .  A channel of length 2, uniform breadth b (not necessarily 
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equal to a )  and uniform depth d may be represented by a four-terminal network 
inserted between 2, and Z,,, as shown in figure 2 (b) ,  wherein (M719 5) 

Cl = bl, Ll = A J g d ,  dl = l/b (1 .1  l a ,  b, c) 

in the limit e 4 0 with 1 = O(R) .  A straightforward extension of the analysis of 
M71$ 5, based on the equaiions of quasi-one-dimensional channel motion (Lamb 
1932, $185)) implies that, if the dimensions of the channel are non-uniform, 
bl in (1.11 a)  should be replaced by the corresponding area and (1.11 c )  by 

(1.12) 

where S(x)  is the cross-sectional area of the channel. 
The amplification factor for the equivalent circuit of figure 2 (b)  is given by 

( o / < E  = = (l+LZ)[l-€{A+d;+(l+fi)A~}fi€(l+n’)~~]-l) (1.13) 

where fi is the ratio of the free-surface area of the channel (if any) to that of the 
basin. The resonant frequency w = wo is determined by 

€{A+-&l+(l+a~)d#@-E) = I (w = wo).  (1.14) 

The dependence of AE on e prevents an explicit solution of (1.14), but the 
solution is readily obtained by iteration. The corresponding period is given by 

To = Bn(A/gd)4{-A+-At+(1 +a)A-}+, (1.15) 

in which AE may be neglected for sufficiently small d / d E .  The Q of the series- 
resonant circuit is given by 

l/Qo = e,,(1+*r)gE = (l+fi)(d#@-+d#@-l+(l+a)d#@-E}-l~E. (1.16a)b) 

We emphasize that the r.m.s. displacement in H for a prescribed random input 
with a power spectrum that comprises wo is proportional to Qt, rather than to Qo; 
seeM7184. 

The preceding discussion neglects frictional losses in boundary layers and in the 
eddying flow associated with separation at the mouth. The separation losses, 
which may be comparable with, or even dominate, radiation losses a t  resonance, 
are considered in $ 7 t  and may be represented by a resistor R, in series with LH 
(separation may occur a t  both ends of an entry channel, but the losses may be 
represented by a single resistor if LZ 4 1).  Boundary-layer losses in the harbour 
may be represented by an additional series resistor R,; they are typically small 
compared with the separation losses (see $ 8). Boundary-layer losses in a narrow 
entry channel,$ which may be much larger than those in the harbour, may be 
represented by an additional resistor .El in series with Ll if a 4 1. These resistors, 
in contrast to RE, are necessarily nonlinear (we exclude the unrealistic possibility 
of laminar boundary layers), but it suffices for the calculation of resonant re- 

t Entry separation, including harmonic distortion, has also been considered in a recent 
study by Mei & Unluata (i974, private communication). Their results for the Helmholtz 
mode are similar to those in 5 7 .  

$ Shaw & Lai (1974, private communication) also have considered these losses. 

29 F L M  67 



450 J .  W .  Miles and Y .  K .  Lee 

sponse to neglect the harmonic distortion that accompanies nonlinearity and to 
define 

R = 2D/11[2,  (1.17) 

where D is the (temporal) mean dissipation rate associated with the flow of I 
through R. In  keeping with this approach, we neglect frictional losses in $§ 2-6, 
which proceed rationally from the hypothesis of an ideal fluid, and then calculate 
the losses by ad hoc methods in $5 7 and 8. The corresponding Q may be estimated 
by replacing RE by the sum of RE, R, (separation losses) and R, (boundary- 
layer losses). If the effective value of R is sufficiently large, as for a breakwater 
with a narrow opening (see §7),  the resonant response may be almost completely 
suppressed, in which case Q has only qualitative significance. 

2. Interior boundary-value problem 
The restrictions (1.1 b )  and (1 .2 ) ,  together with the assumption of small dis- 

placements, imply that u and c satisfy the linearized shallow-water equations 
(Lamb 1932, $$189, 193) 

iwu = -gvg (2.1) 

where V is the two-dimensional gradient operator and h is the local depth. 
The boundary-value problem for H ,  which is a sub-problem of the complete 
problem for H + E ,  requires the solution of (2.1) and (2.2) subject to the boundary 
conditions 

h(n.u)=O on B (2.3a) 

and hu = q(y) on M ,  (2 .3b)  

where n is the outwardly directed normal, B and M are the closed and open 
portions of the lateral boundary of H ,  and q(y)  is the prescribed (or assumed) flow 
per unit width into M .  

The complete problem requires the solution of the exterior boundary-value 
problem for cE and the solution of the integral equation that is obtained by 
matching the exterior and interior solutions across M .  The explicit solution of this 
integral equation is circumvented by posing q in the form 

(2.4a, b )  

and estimating f(y) subject to ( 2 . 4 b ) ;  see discussion in M 7 1 9 2 .  We recall that I 
is related to (c), the mean value of c over H ,  by ( 1 . 4 ) .  

Invoking the hypothesis that c is approximately uniform in the Helmholtz 
mode, we pose the solution of (2.1) and (2 .2 )  in the form 

c w  = (5) (1 + 4 r ) } ,  = V / d )  V W ) ,  (2 .5u ,  b )  
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where e is defined by (1.2). Substituting (2.5) into (2.2) and (2.3)) invoking 
(1.4) and (2.4), and letting e $ 0  with q5 = O ( l ) t ,  we obtain 

V .  (AVq5) = - 1/A ( A  = h / d )  (2.6) 

and 
( 2 . 7 ~ )  

(2.7b) 

where A is the dimensionless depth. Averaging ( 2 . 5 ~ )  over H yields the constraint 

<q5) = 0, (2.8) 

which renders the solution of (3.6) and (2.7) unique. We remark that I$ is real. 
The temporal mean kinetic energy in H is given by 

where (2.10) 

is defined as in (1.6). Invoking Green's theorem and (2.6)-(2.8) yields the alterna- 
tive representation 

= - S , W Y  = ad$). (2.11) 

We emphasize that (2.10) follows directly from (2.9) and provides the proper 
starting point for approximations to A, whereas -4 is given by (2.11) only if 
(2.6)-(2.8) are satisfied. 

3. Bounds for ,X 
The parameter A, as determined by (2.6)-(2.8) and (2.10)) has several classical 

analogues (cf. Rayleigh 1896, gg304ff) that suggest the following bounds (these 
bounds might be surmised from Rayleigh's principle, but direct derivations 
appear to be desirable). 

We first note that if q5 is the solution of (2.6)-(2.8) and if $) and hence also 
q5 + $) is any function that satisfies 

<$> = 0 (3.1) 

and for which !JRH($)  and !JR3f($) exist, then: 

(3.2b) 

by virtue of Green's theorem (d l  is positive counterclockwise), (2.6)) (2.7) and 

(3.3) 
(3.1); 

E H ( I $  + $) = &+ EX($) f 2 r n M ( $ )  

The approximation is not uniforinly valid in r = O(a).  This present,s no difficulty herein, 
but it might be either necessary or expedient to pose higher approximations in the form of 
matched asymptotic expansions. 

29-2 
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by virtue of (2.10) and (3.2); 
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by virtue of (2.1 I). Introducing the functional 

and invoking (3.3) and (3.4) then yields 

for any approximation that satisfies the constraint (3.1). 
The lower bound (3.6) is useful only if the error term %ItH($), whichis quadratic 

in the error @, is small. The fact that the kinetic energy is concentrated in M 
suggests that a good approximation may be obtained by satisfying (2.6), (2.7b) 
and (2.8) and relaxing ( 2 . 7 ~ ~ ) .  Let $ be such an approximation; then Green’s 
theorem implies 

” 

where 4 1  = m M ( 6 ) ’  dB = -IB @$ndz m B ( $ ) *  

Setting $ + 4 = $in (3.6) and invoking (3.7) and ( 3 . 8 ~ ~ )  yields 

( 3 . 8 ~ 4  b)  

C;m<($) = d > f + d B  < A. (3.9) 

We obtain a somewhat sharper lower bound, 

4 2 d > ( A M  - AB)-’ 2 A M  + d B ,  (3.10) 

by substituting (2.10), (3.7) and 

J H  AV$ . V$dA = AM, (3.11) 

which is obtained by setting 4 = $in (3.2), into the Schwarz inequality 

(AV$. (w$)2) (Wio2). (3.12) 

Now suppose that $* satisfies (2.6)-(2.8) with A replaced by A, therein. It 
then follows from (2.10) and (2.11) that the corresponding inertial parameter is 
given by (note that the functional !IllM does not, whereas does, involve A 
explicitly) 

A* -= J/*(V4*)2dA = %%f(4*) (3.13) 

and from (3.5) and (3.6) that 

%<($*I = 2A*-mH($*) < 4. (3.14) 

Combining (3.13) and (3.14) yields 
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from which it follows that increasing/decreasing R decreases/increases A!. This 
result, which is closely related to the result that increasing/decreasing R increases/ 
decreases the lowest resonant frequency in a closed basin (Troesch 1960, p. 279) ,  
may be used to bound &for a harbour of variable depth by comparing it with the 
results for harbours having uniform depths equal to the maximum and mini- 
mum depths in H or, more generally, with the results for harbours having bottoms 
that bound the actual bottom. 

We obtain a somewhat sharper lower bound, 

A>, ~wJMq5*) = A: ( A * + ~ I ( R - A * ) ( V q 5 * ) 2 ~ ~ ) - 1 ,  (3.1G) 

by substituting (2.10), (3 .13)  and 

(3.17) 

which is obtained by setting $ = q5* in (3 .2 ) ,  into the Schwarz inequality obtained 
by replacing $ by q5* in (3.12).  

Combining the derivations of (3.9) and (3 .15) ,  we obtain 

A > &*I@+&*B+J (A* -4  (V$*)2dA,  (3 .18)  

and dCg are given by (3 .8a ,  b )  
ii 

where $* satisfies (2.G), (3 .7b )  and (2.8), and 
with A replaced by A, in (3 .8b ) .  

4. Uniform depth 
The assumption R = 1 reduces (2.6) to Poisson’s equation, 

v2q5 = - l / A  (a = 1 ) .  ( 4 .1 )  

(4 .2 )  

A solution of (4 .1 )  that satisfies (2 .7b )  and (2.8) is given by 

= 2A-I (<r2) - r21 + q5nlfr) - (q5fif>, 
where r = Irl is the radius from the midpoint of M ,  - )r2/A is a particular solu- 
tion of (4 .1)  that yields q5z = 0 on x = 0, and 

(4 .3a )  

- log (&/a) + O(n2/r2) ( r / a  -+ 00) (4 .3b)  

represents a potential flow (solution of Laplace’s equation) that satisfies (2 .7b )  
and yields q5s = 0 on x = 0, IyI > +a. Substituting (4 .3b)  into (4 .2 )  and ta,king the 
gradient yields 

( 4 . 4 a )  

= 0 on r = (2A/n)* = 24R. (4 .4b )  

Accordingly, (4.2) provides the solution of (2.6)-(2.8) for a semicircular harbour 
of depth d and radius 24R > a (a 4 1). It also provides an approximation of the 

Vq5 - r{(nr2)-l - (2A)-l) 
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type 6 in 93 for other harbours. Exact solutions of (2.6)-(2.8) for other harbours 
of uniform depth may be obtained by invoking standard techniques in potential 
theory but do not appear to be worth pursuing here. 

Substituting (4.2) into (3.8a), invoking (2.4b) and (4.3b), and letting 01.1 0 [see 
( I .  I)] yields 

(4.5a) AM = (+log (4r/a) - $(r2/A)) + F ,  

where (4.5b) 

It may be shown that F is non-negative. The approximations (M7193) 

f")(y) = I/a, f'b'fy) = ?i-l{(&a)2-y2j-B, (4.6a, b) 

which correspond to (a)  plane-wave motion in a channel of width a and ( b )  
potential flow through an aperture in an infinite plane, yield 

(4.7a, b)  

We use F@) = 0 in the subsequent examples, although F("' may be more accurate 
for a harbour with an entry channel of length greater than its width. The dif- 
ference, 0-036, would alter the calculated resonant frequency for a typical harbour 
by less than 1 yo; it  also provides a measure of the uncertainty in our approxima- 
tions to A. 

F(a) = 7~-1($ -log 4) = 0.036, Fcb) = 0. 

Substituting (4.2) into (3.8b), invoking (4.3b), 
n n 

and 

where 0 is the angle shown in figure 1, and letting LX J. 0 yields 

Applying (4.5) to the semicircular harbour bounded by r = 2*R, for which 
.kB = 0,yieldst 

A = A ~ M  = 7i-llog ( ~ R / u )  - 0.128. (4:ll) 

Applying (4.5) and (4.10) to a circular harbour of radius R yields 

A'l = ~ T ~ I o ~ ( ~ R / u ) - O . I I ~ ,  AB = 0.080. (4.12 a, b)  

The corresponding value of A determined by the solution of (2.6)-(2.8) and 
(4.7b), M7156, exceeds AM+AB by 0.080, which would alter the calculated 
resonant frequency for a harbour with R = IOU and an entry channel of length 
a by less than 2 %. The two lower bounds given by (3.10) differ by 0.6 yo for 
R = 10a. 

This last example suggests that (4.5) plus (4.10), or even (4.5) alone, should 
provide an adequate approximation to dl if B runs along, or close to, x = 0 

t It can be demonstrated that, of all narrow-mouthed harbours of equal area, the semi- 
circular harbour gives the minimum value of ,X (Lee 1974). 
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FIGURE 3. Schematic diagram of harbour for which B and ill intersect 
at angles &r-O1 and +7r+Oo. 

for 1 y/ < y1 < a. On the other hand, the accuracy deteriorates as M approaches 
a sharp corner in H owing to the additional constriction of the flow. We therefore 
consider the configuration shown in figure 3, in which those segments of B that 
intersect the ends of M are straight over distances that are large compared with 
a. Measuring r from the intersection of these two segments, such that they are 
given by r > r0,, on 8 = 80,1, 8, > 8, (see figure 3), and mapping the sector 
B0 < 8 < 8, onto a half-plane through the transformation 

seix = (r/r,)vei@--Bo), v = n/(8, - 8,)) ( 4 . 1 3 ~ )  b )  

we pose $az in the form 

$ M ( f ' )  = " - 1 ~ , f m o g { 2 ~ l s -  (03 k)l}dt-  ( 4 . 1 4 ~ )  

(4n) log (2r/y1) (./a -+ a), (4.14 b )  

where M,, is the projection of M on the real axis of the s plane and f,, is the normal 
derivative of $M in H,. Setting 8, = -in, 8, = in, v = 1, rl = &a, = 27/a 
and f ,  = iuf reduces (4 .14)  to (4 .3) .  

Substituting (4 .14)  into (4 .2 )  and calculating daI and AB as above yields 

d a f  = <(44 log (Wr, )  - * (r2/A))  +c (4 .15)  
I- 

where (4 .17)  

The explicit calculation of F,, for an assumed form off (y) is quite involved for 
arbitrary v ;  however, guided by (4 .7b)  and the corresponding result for v = 2 
(see below), we replace the specification of f(y), which now enters the calculation 
only through Fv, by F,, + 0. 

' Setting B0 = 0, 8, = in, ro = 0, rl = a and v = 2 yields a harbour with M 
adjacent to  a rectangular corner (figure 4 ) .  In  this case, the assumption that 
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M I  

n i R  -4 
FIGURE 4. Rectangular harbour with mouth at  one corner. 

f(y) corresponds to potential flow through a gap of width a in the plane x = 0,  
corresponding to M plus its image in the adjacent boundary, leads to Fv = 0. 
Applying (4.15) and (4.16) to a square harbour of side d R  then yields 

AM = (2/n) log ( ~ R / u )  - 0.037, dB = - 0.001. (4.18a, b)  

The value of A determined by the corresponding solution of (2.6)-(2.8), M 7 1 $ 7 ,  
exceeds AM + dB by 0.009. The relatively small values of dB and the error 
term in this example reflect the satisfaction of ( 2 . 7 ~ )  on the two boundaries of 
H that are adjacent to M .  

We now apply the preceding results to the model of Long Beach Harbor 
previously studied by Lee (1971). The plan is shown in figure 5, and the various 
parameters are listed in table I (some of the data in figure 5 and table 1 refer to 
$6, where the same example is reconsidered as a pair of coupled basins); the 
depth is constant (h  = d )  and equal to the outer depth (a, = d ) .  We approximate 
the entry by a short channel that terminates in the mouth M, in the plane of the 
upper, outer (with reference to figure 5 )  boundary. dl, AM and AB, as calcu- 
lated from (1.12), (4.15) and (4.16), are listed in table 1. Substituting these data, 
together with AE from ( l . l O ) ,  into (1.14), we obtain k,R = 0.386 (8 = 0.468) 
for the resonant wavenumber, which agrees with Lee's result k,R = 0.38 (both 
measured and calculated by numerical integration of the full Helmholtz equa- 
tion). 

The preceding examples suggest that the approximation provided by (3.9), 
(4.15) and (4.16) with F, = 0 should provide an adequate approximation to 
d for most harbours of uniform depth if e 5 4. 

5. Non-uniform depth 
We first recall (see last paragraph in $3) that lower and upper bounds to 
may be obtained by replacing A by its maximum and minimum values. We 

also recall that the kinetic energy is concentrated in M ,  so that a good approxima- 
tion to A sometimes may be obtained simply by replacing A by its mean value in 
M ,  AM = 1 (if d is the mean depth in M ) .  

It does not appear possible to obtain useful analytical solutions of (2.6) 
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FIGURE 5. Long Beach Harbor (see $04 and 6). The parameters are listed 
in table 1. 

unless the form of f i  permits separation of variables. If A can be approximated by 
A = A(r),  (2.6) admits the solutions 

#o = 1' (mfi)-lcir, $ A  = - *A-~I; (r / / i )  dr (5 . la ,  b) 

as counterparts of r-llog (2r/yl) and -r2/4A. The resulting counterparts of 
(4.15) and (4.16) with Fv = 0 (the variation of f i  over Jf being neglected) are 

(5.2) 

d B  = - A(~ '#O f #A) {(''/r) - g(r2/A)}d19. (5.3) 

4 5  

"'&' = ('$0 + # A )  

s, and 

If A depends on both r and 19, the solutions (5 . la ,  b) could be improved by 
iteration by transferring r2 (l i$s)s to the right-hand side of (2.6); however, the 
following examples suggest that the adequacy of the lower bound provided by 
(3.15) renders such a procedure unprofitable. 
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I 
A ,  areaofH, = 45.60, A ,  s areaofHz = 17-73 
A 
a, = 2-35, 

Single -basin 

length of channel = 0.7 

total area of harbour = 63.82 = rR2 
a, = 2.1 

theory Coupled-basin theory 
Hi + H2, f 7 

excitation Inner basin, H ,  Outer basin, Hl Outer basin, H ,  
through Ml excitation at M2 excitation at M ,  excitation at M ,  

2.35 2.15 2.35 2-15 
1.552 2.687 (= v,) 1.552 (= v,,) 2.857( = v12) 'I} V (cf. figure 3) 

A B  0-043 0.042 0.068 0.302 
A M + ~ B  0.420 0.887 0-558 1.514 
d & / ( A M - d B )  0-425 0.889 = -4, 0.567 = All 1.614 =-+fa 

-412 - 0.722 
4 1.559 1.559 

0.386 0.389 
- 0.798 

A M  0.377 0.845 0.490 1.212 

2 7 L-- 

4 R 
k ,  R 

TABLE 1. Long Beach Harbor (unit of length based on mouth width a of figure 5) 

Applying (5.1)-(5.3) to the semicircular planform of 94 (for which Y = 1 and 
rl = *a) with the paraboloidal bottom 

A =  1-2j(l-AJ(~/R)' ( O < r < 2 * R )  (5.4) 

(5.5) 

and letting alRJ.0, we obtain 

d = d(4.11) + (27~) - l {$  - (1 -hl)-l-ht( 1 -Al)-210ghl}, 

where d(4.11) is the corresponding result for A = 1. We note that (5.5) is 
asymptotically (a, 6 J. 0)  exact in this example. Choosing A,  = 1 and $* = $(4 .2)  
in (3.15) yields the lower bound 

A' > A(4.11) +0*053(1-h1). (5.6) 

The corresponding results for the conical bottom 

A = 1 - 2-*( 1 -Al) ( r / R )  (5.7) 

are J? = A(4.11) + 7~-l [i - (1 -A 1 )-3 - +( 1 - A,)-' +%( 1 - h1)-l 

-{(1 -Al)-'- 1}'10gA~] (5.8) 

and Al > 4 4 . 1 1 )  + 0-170 (1 - hl) .  (5.9) 

The results ( 5 4 ,  (5.6), (5.8) and (5.9) are plotted in figure 6. We remark that 
the increase i n d  associated with the paraboloidal decrease in depth for h, > $is 
less than the uncertainty associated with the choice of f(y), roughly 0.04. The 
increase in ,I associated with a conical decrease in depth is appreciably larger 
(since the change in depth in the neighbourhood of M is relatively larger), but 
is less than 0.1 for A, > +. 
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0.3 

0.2 

9 a 

0- 1 

FIGURE 6. The increase in A? associated with a decrease in depth in a semicircular harbour. 
The bottom is paraboloidal (5.4) for the bottom two curves and conical for the upper two 
curves. __ , exact results for a, E 0; ---- , ba,sed on the approximation (3.15). 

We surmise from these examples that (3.15) should provide an adequate 
estimate of for most harbours. Moreover, the examples of $ 4  suggest that 
(3.18) also should provide an adequate estimate if 1 - A = O(r )  as r J. 0. Proceeding 
on this hypothesis and approximating $, by (4.2) and (4.14), we obtain 

6.  Coupled basins 
We now generalize the preceding formulation to a harbour (see, for example, 

figure 5 )  that comprises two basins H ,  and H ,  mutually coupled through M ,  
and coupled to the exterior through M,. Both M I  and M 2  are assumed to be 
narrow in the sense of ( l . l ) ,  whilst the counterpart of (1.2) is 

e6 = u2At/gd < 1, (6.1) 

where Ai is the free-surface area of Hi and d is the reference depth. 
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Let Ii fi(s) be the volumetric flux per unit width and Ii the total volumetric 
flux through Mi, where fi is normalized as in (2.4b) and s is the counterpart of y 
in Mi, and let 

c 

(6.2) 

be the weighted average of 5 in Mi. Linearity then implies the existence of an 
impedance matrix (2,) and an impedance 2, such that 

and v, = Z,&, 
whilst conservation of mass implies 

( 6 . 3 ~ )  

(6.3 b)  

~ o J A ~ ( C ) ~  = I1 - Iz, (6.4a, b) 

for the average displacements (c)l and (0. in Hl and H,. The corresponding 
equivalent circuit is shown in figure 2 (c), 

ioA, (5). = I. 

The impedance 2, may be constructed as in Ss1-5 and is given by 

2, = (iuC2)-1 + iwL, = (iOJAz)-l (1  - fzZV6l2), (6.5) 

where -4. = ~ z ~ m ~ z ~ z ~ z  (6.6) 

and #2  is determined by (2.6)-(2.8) with the subscript 2 appended to each of 
A ,  B, H ,  M and f. 

To construct Zij, we let 

0 on B,, , 

and W@li/W = 

Proceeding as in $$1-3, we obtain 

( 6 . 9 ~ )  

(6.9b) 

2, = (iwcl)-l+iuLij = (iuA1)-1(1 -€lJzij)) (6.10) 

where -lij = kji = Al(AVglli.V#lj) (6.1 1 a) 

(6.11 b) 

The #li and #. may be estimated as in $$4 and 5. We consider, for example, 
the model of Long Beach Harbor (figure 5 ) )  already considered as a single basin 
in $ 4. The angles r / v l l ,  r /v12  and n/vz  are defined according to (4.13b). AH and 
AB for H, and for Hl excited through either Ml or M .  are calculated from (4.15) 
and (4.16) with Fv = 0; these results are used to calculateA, (H2 excited through 
M2), All (H, excited through MI)  and -dZ2 (Hl excited through M,) using both 
(3.9) and (3.10). Jz12 is calculated from (6.11b)) using (4.6b) fortl  and (4.146) 
for fil2. The corresponding resonant wavenumbers, obtained by requiring the 
input reactance a t  E to vanish, are kB = 0-389 and 0.798. The lower value is less 
than 1 yo above that given by the single-basin approximation of $4 and cannot 

- - -Ififj #lifjds = - /Mi# l j f id s*  
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be distinguished therefrom in comparison with Lee’s result: this suggests that 
the additional complications of the two-basin model, vis-&-vis its single-basin 
counterpart, may not be worthwhile in many applications. The higher value of 
k R  is 16 % below Lee’s result (0-95), but the agreement is perhaps better than 
might have been expected in view of the fact that the corresponding value of E 

is 2.0 (this mode, in which the dominant motion is between HI and H, through 
M,, is much less significant for tsunami response than the dominant mode, 
both because of its higher frequency and because it is less efficiently excited 
through MI). 

7. Separation loss 

harbour mouth, or a t  either end of an entrance channel, in the form 

AC = AP = &‘,g-ll.til.ti, 42 = f / a d ,  

Following conventional hydraulic practice, we represent the head loss at the 

(7 .1  a, b)  

where C, is an empirical coefficient (see below) and +2 is the spatial average of the 
velocity through the mouth. Multiplying this head loss by the flow rate f and 
taking the temporal mean (which ( ) now indicates) yields the specific dissipa- 
tion rate 

D, = (fa?) = +C,g-lad(l&I3) = (2CS/3n)g-ladluIS, ( 7 . 2 ~ )  

where u = I/ad. (7 .2b )  

Substituting (7 .2a ,  b)  into (1 .17)  yields 

R, = (4CS/3n) (gad)-llul.  (7 .3 )  

Rg) = &J(gd) - l .  (7 .4)  

where 42 = ] u ( / w a  (7.52)) 

A convenient reference value for R, is the radiation resistance for an ocean 
of depth d, 

Dividing (7 .3 )  by (7 .4)  yields 
R,/R$’ = ( 8 C , / 3 ~ )  @, (7 .5a )  

is an inverse Strouhal number for the mouth (but note that the conventional 
Strouhal number is referred to w/2n rather than a). 

Dimensional analysis, together with experimental results for the related 
problems of oscillating flat plates (Keulegan & Carpenter 1958) and acoustical 
orifices (Ingard & Ising 1967), suggest that, in general, 

C, = C’(Re,@) (Re  = Iula/v) (7 .6 )  

but that the dependence on Reynolds number Re should be unimportant in the 
present context, in which Re B 1 and the separated flow is assumed to be fully 
turbulent. The acoustical experiments suggest that C, is an increasing function 
of @ but are not quantitatively applicable in the present context owing to the 
geometrical differences. Elementary considerations (as in one-dimensional 
hydraulics) suggest that the asymptotic value (‘22% 1) of C, for an aperture 
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should be the sum of the commonly accepted loss coefficients for contraction and 
expansion of a channel, 1*0+0.5 = 1.5 (the limiting value of C, reported by 
Ingard & Ising for a circular acoustical orifice is % O ) ,  and Ito (1970) reports that 
the use of this value in a study of breakwaters a t  tsunami frequencies yields re- 
sults in agreement with field measurements.t Similarly, the limiting value of 
C, a t  either the entrance or the exit of a channel should be roughly 0.75, the 
average of the steady-flow contraction and expansion coefficients. 

Ito gives results for a numerical model of Ofunato Harbour with and without 
a breakwater. The dominant mode in the absence of the breakwater has a 
period of 37 min and a Q (estimated from the half-power bandwidth) of roughly 
4. Using his data, d = 17 m, a = 200m, b = 1700m (width of exterior channel) 
and u + 3 m/s, yields @ = 7, - 8 and R,/R, = 10, which implies Q = 0.4; this 
is consistent with his result that  the resonant response of the dominant mode is 
completely suppressed by the breakwater. [The dominant mode in Ofunato 
Harbour without the breakwater corresponds roughly to a quarter-wave, open- 
organ-pipe-like resonance. The resonance with the breakwater would be quali- 
tatively of the Helmholtz type were it not for the separation losses; using the 
results of Miles & Munk (1961) for an equivalent rectangular harbour radiating 
into a semi-infinite sea through a narrow aperture with no other losses yields a 
period of 49 min and a Q of 6.1 

8. Bottom friction 

tude of the shear stress on the bottom is given by 
Let cf be an empirically determined friction coefficient, such that the magni- 

7 = crpp,  (8.1) 

where 4 is the particle velocity just outside the boundary layer on the harbour 
bottom. The specific dissiption rate then is given by 

D,  = glcf// (g3) d A  = +(nq)-lc f f s  IQ13dA, (8.2) 

where the integrals are over the harbour bottom. Invoking (I .  17) yields 

R, = +(7rg1112)-1cf lpI3dA. (8.3) ss 
The horizontal motion in the Helmholtz mode is concentratedin the neighbour- 

hood of the mouth; accordingly, we obtain a first approximation to q by in- 
voking the known solution for potential flow through the gap IyI < +a in the 
planex = 0: 

141 = ( 2 1 ~ 1 / ~ )  (Cos2[-COSh2q)-~, (8-4) 

where x = &asinh[sinq, y = &acosh<cosq, (8.5a, b )  

t The Reynolds numbers for typical laboratory models, such as that of Long Beach 
Harbor (see above), are too low to test the results of this and the following section. 
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and JuI is the mean velocity through the gap. Substituting (8.4) and (8.5) into 
(8.3) and integrating over the half-plane (which is asymptotically equivalent to 
integrating over A in the limit a J. 0), we obtain 

= 0.443a21u13, (8.6b) 

where (8.6b) follows from (8 .6a)  with aid of known results for elliptic integrals. 
Substituting (7.2b) and (8.6b) into (8.3),  and dividing the result by (7.3), 

we obtain 

RB = O.376Cf(qd2)-'lUl (8.7) 

and RB/Bs = 0.S86(cf/Cs) (a /d) .  (8.8) 

We emphasize that (8.7) and (8.8) rest on the hypothesis that the horizontal 
motion is concentrated in the neighbourhood of the harbour mouth and therefore 
are expected to be valid only for a < 1 [see (1.1)].  

The effective Strouhal number for cf now must be based on the boundary- 
layer thickness, rather than a as in (7.6); accordingly, it  is quite small for tsuna- 
mis, and we may safely use that value of cf which would be appropriate for tidal 
friction over the same bottom. The most frequently cited value is cJ = 2 x 
(e.g., Taylor 1919), although values as high as 10-2 have been reported (Putnam 
& Johnson 1949; Hasselmann & Collins 1968). Substituting the former value, 
together with C, = 1.5, into (8 .8)  yields 

RB/Rs + 1.2 x (a ld ) ,  (8.9) 

which is small for any narrow-mouthed harbour for which Helmholtz resonance 
is likely to be significant (and this statement remains true even if cf = 
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